

Biological Forum – An International Journal

14(2): 698-703(2022)

ISSN No. (Print): 0975-1130 ISSN No. (Online): 2249-3239

Efficacy of Fungicides and Bio-control Agents against Aspergillus flavus

N. Aiswarya^{1*}, S.L. Bhattiprolu², K. Bayyapu Reddy¹ and G. Rama Rao² ¹Department of Seed Science and Technology, Advanced Post Graduate Centre, (Andhra Pradesh), India. ²Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Lam, Guntur (Andhra Pradesh), India.

> (Corresponding author: N. Aiswarya*) (Received 08 February 2022, Accepted 27 April, 2022) (Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: Of the various biotic stresses in groundnut, *Aspergillus* spp infect both in the field and storage causing most of the post harvest losses. Pre harvest infection by *A. flavus* is the major cause of aflatoxin contamination in peanut. Efficacy of various fungicides and bio-control agents was evaluated against *A. flavus* infecting groundnut. Seeds of 13 groundnut varieties were artificially inoculated with *A. flavus* (10⁶ conidia ml⁻¹). Inoculated seed was treated with fungicides *viz*. mancozeb @ 3g/kg, carbendazim @ 2 g/kg, tebuconazole @ 1 g/kg, carboxin+thiram @ 2 g/kg; bio-control agents *Trichoderma viride* @ 10 g/kg and *Pseudomonas fluorescens* @ 10 g/kg and then incubated in rolled paper towels. Observations on various seed quality parameters including germination (%), seedling length (cm), seedling dry weight (g) and seedling vigour indices revealed that among the test fungicides and bio-control agents, tebuconazole recorded the highest germination and maximum per cent disease control where as carbendazim recorded highest seedling length, seedling vigour index I, seedling dry weight and seedling vigour index II.

Keywords: Aspergillus flavus, fungicides, Groundnut, Pseudomonas fluorescens, Trichoderma viride, seed treatment.

INTRODUCTION

Groundnut is cultivated in India as a rainfed crop and post-harvest losses in groundnut range from 10 to 25% of the production in Asia (Azeemoddin, 1993). Fungi such as Aspergillus niger, A. flavus, Alternaria dianthicola, Curvularia lunata, Fusarium Macrophomina phaseolina, Rhizopus oxysporum, stolonifer cause rotting, seed necrosis, loss in germination and toxification of oil seeds. Aspergillus is a common mold in tropical and sub tropical countries and causes aflatoxin contamination in groundnut and cereals (Chavan and Kakde, 2008). Seed germination decreased from 90% to 35 and 30% in groundnut, due to A. niger and A. flavus, respectively (Kakde and Chavan, 2010). A. flavus is the most important storage fungus that causes seed rot and leads to aflatoxin contamination in groundnut seeds. Seed treatment is cost effective against seed borne diseases resulting in healthy and vigorous plant stand and reduces subsequent bulk consumption of chemicals in the field as foliar sprays. Significant reduction of A. flavus populations and kernel infection was obtained in both greenhouse and field experiments (Waliyar et al., 2008). Therefore, efficacy of different fungicides and biocontrol agents on seedling quality characters was investigated.

MATERIALS AND METHODS

The present investigation was carried out in the laboratory of Plant Pathology, Regional Agricultural Research Station, Lam and Department of Seed Science and Technology, Advanced Post Graduate Centre, Guntur, Andhra Pradesh during 2018-2019. Seeds of 13 groundnut cultivars viz., Abhaya, Amaravati, Chitravati, Dharani, Haritandhra, ICGV 00 350, Kadiri 6, Kadiri 9, Narayani TAG 24, TCGS 1073, TCGS 1616 and TCGS 1694 were surface sterilized, soaked in conidial suspension of A. flavus (10⁶ conidia ml⁻¹) for 20 min and dried at room temperature overnight. Seeds soaked in sterile distilled water served as control. The inoculated seed was treated with various fungicides and biocontrol agents viz., mancozeb @ 3g kg⁻¹, carbendazim @ 2 g kg^{-1} , tebuconazole @ 1 g kg^{-1} , carboxin+thiram @ 2 g kg^{-1} ; bio-control agents *Trichoderma viride* @ 10 g kg⁻¹ and *Pseudomonas fluorescens* @ 10 g kg⁻¹. The treated and control (uninoculated) seeds were kept for germination using rolled paper towel method in four replications of hundred seeds and the following observations were recorded.

Germination (%): On 10th day (final count), all the normal seedlings were counted. The germination percentage from each sample in each replication was computed as per the formula:

Germination (%) =
$$\frac{\text{Number of normal seedlings}}{\text{Total number of seed sown}} \times 100$$

Aiswarya et al.,

Biological Forum – An International Journal 14(2): 698-703(2022)

Seedling Length (cm): Ten normal seedlings were taken from each sample at random on the 10^{th} day and length was measured from the tip of the primary leaf to the tip of the primary root with a scale.

Seedling Dry Weight (g): Ten normal seedlings collected as above were dried in a hot air oven at $75\pm1^{\circ}$ C for 48 hours and mean seedling dry weight was recorded.

Seedling Vigour Index: Seedling vigour index I was computed using the formula of Abdul- Baki and Anderson (1973).

Seedling vigour index I = Germination (%) \times Mean seedling length (cm)

Seedling vigour index II was computed as per the formula of Reddy and Khan (2001):

Seedling vigour index II = Germination (%) \times Seedling dry weight (g)

The data recorded were analyzed statistically by adopting Completely Randomized Design (CRD) as described by Panse and Sukhatma (1985).

RESULTS AND DISCUSSION

Significant increase in germination (%), seedling length, seedling vigour indices, seedling dry weight and reduced infection (%) due to seed treatment over the inoculated control was observed irrespective of the genotype.

The germination in uninoculated control (91.31%) decreased to 70.65% due to inoculation with A. flavus (Table 1, Fig. 1). Tebuconazole @ 1 g kg⁻¹ seed recorded the highest germination (91.00%) followed by carbendazim @ 2 g/kg seed (90.35%), carboxin+thiram @ 2 g kg⁻¹ seed (89.63%) and mancozeb @ 3 g kg⁻¹ seed (88.92%). The average seedling length in A. flavus inoculated treatment was 16.04 cm as against 20.81 cm in uninoculated control (Table 2, Fig. 2). Carbendazim @ 2 g kg⁻¹ seed recorded the highest seedling length (18.93 cm) followed by carboxin+thiram @ 2 g kg⁻¹ seed (18.55 cm) and mancozeb @ 3 g/kg seed (18.00 cm). T. viride @ 10 g/kg seed (17.07 cm) and P. fluorescens @ 10 g kg⁻¹ seed (16.89 cm) were superior to inoculated control (16.04 cm). Tebuconazole @ 1 g kg⁻¹ seed recorded the lowest seedling length of 14.25 cm i.e., less than inoculated control (16.05).

The seedling vigour index I of 1907 in uninoculated control was reduced to 1145 due to inoculation with A. flavus (Table 3, Fig. 3). Carbendazim @ 2 g kg⁻¹ seed recorded the highest seedling vigour index (1716) followed by carboxin+thiram @ 2 g kg⁻¹ seed (1669) and mancozeb @ 3 g/kg seed (1607). Seed treatment with tebuconazole @ 1 g kg⁻¹ seed recorded the lowest (1300). The seedling dry weight of 0.24 g in uninoculated control was reduced to 0.19 g due to A. flavus (Table 4, Fig. 2). Carbendazim @ 2 g kg⁻¹ seed recorded the highest seedling dry weight (0.23 g)followed by carboxin+thiram ($@2 ext{ g kg}^{-1}$ seed (0.22 ext{ g)} and mancozeb ($@3 ext{ g kg}^{-1}$ seed (0.22 ext{ g)} whereas tebuconazole ($@1 ext{ g kg}^{-1}$ seed recorded the lowest (0.19 g). The seedling vigour index II of uninoculated control was 21.55 whereas A. flavus inoculated seed recorded 13.45 (Table 5, Fig. 3). Carbendazim @ 2 g kg⁻¹ seed recorded the highest seedling vigour index II (20.60) followed by carboxin+thiram @ 2 g kg⁻¹ seed (19.83) and mancozeb @ 3 g kg⁻¹ seed (19.22) and tebuconazole @ 1 g kg-1 seed recorded the lowest (16.98).

Adithya *et al.* (2017) obtained higher germination of *A. flavus* inoculated seed with *Trichoderma* spp and *P. fluorescens* followed by carbendazim and mancozeb. Increase in seedling length vigour index I and dry weight of inoculated seeds of groundnut due to seed treatment with carbendazim, mancozeb and carboxin+thiram was observed earlier (Adithya *et al.*, 2017) and Ahmad and Zaidi (2018). The growth retarding effect of triazoles is attributed to the inhibition of gibberillic acid biosynthesis that helps in shoot elongation.

The per cent infection of 8.69 in uninoculated control increased to 41.23 due to inoculation with *A. flavus* (Table 6, Fig. 4). Tebuconazole @ 1 g kg⁻¹ seed recorded the lowest infection (3.88%) followed by carbendazim @ 2 g/kg seed (6.54%), carboxin+thiram @ 2 g kg⁻¹ seed (6.96%) and mancozeb @ 3 g kg⁻¹ seed (7.46%). Reduction in per cent infection with carbendazim, tebuconazole, carboxin+thiram was observed by Islam *et al.* (2015) and Kumari *et al.* (2016). Seed treatment with propiconazole and carbendazim (Rohtas *et al.*, 2016) and carbendazim (Dolas *et al.*, 2018) also recorded decrease in per cent disease incidence.

 Table 1: Effect of seed treatment on germination (%) in groundnut genotypes inoculated with Aspergillus flavus.

				G	ermination (%)				
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+ thiram	Trichoderma viride	Pseudumonas fluorescens	Inoculated control	Uninoculated control	Mean
Abhaya	89.25	89.75	90.25	89.25	70.75	70.50	70.00	90.25	82.50
-	(71.09)	(71.32)	(71.79)	(70.86)	(57.08)	(56.92)	(56.46)	(71.80)	(65.92) ^{cd}
Amaravati	89.00 (70.61)	89.50 (71.07)	90.50 (72.02)	89.25 (70.84)	72.00 (58.03)	71.75 (57.87)	65.75 (53.56)	90.50 (72.05)	82.28 (65.76) ^{bcd}
Chitravati	88.75 (70.39)	89.50 (71.07)	90.75	89.00 (70.61)	71.25 (57.24)	71.00 (57.08)	69.50 (55.69)	90.50 (72.02)	82.53 (65.80) ^{bcd}
Dharani	86.75 (68.63)	87.75 (69.50)	88.25 (69.94)	87.50 (69.27)	65.25 (53.86)	64.50 (53.41)	63.75 (52.37)	88.25 (69.93)	79.00 (63.36) ^a
Haritandhra	88.25 (69.95)	89.75 (71.32)	90.00 (71.55)	89.00 (70.62)	70.00 (56.77)	69.75 (56.46)	69.25 (55.84)	90.50 (72.02)	82.06 (65.56) ^{bc}
ICGV 00 350	88.25 (69.94)	90.25 (71.78)	90.50 (72.02)	89.50 (71.07)	70.75 (57.24)	70.50 (57.08)	69.00 (55.84)	91.25 (72.80)	82.50 (65.97) ^{cd}
Kadiri 6	87.00 (68.84)	90.00 (71.55)	90.75 (72.28)	88.75 (70.39)	72.75 (58.51)	73.25 (58.84)	71.25 (57.25)	90.50 (72.05)	83.03 (66.21) ^d
Kadiri 9	89.00 (70.61)	90.75 (72.27)	91.50 (73.05)	89.75 (71.31)	76.25 (60.82)	74.25 (59.49)	72.00 (57.87)	91.00 (72.53)	84.31 (67.24) ^{ef}
Narayani	90.00	92.50	93.00	91.25	73.00	72.00	71.00	92.75	84.44

	(71.55)	(74.08)	(74.65)	(72.78)	(58.67)	(58.03)	(57.24)	(74.36)	(67.67) ^f
TAG 24	95.25	96.50	98.00	96.00	86.50	85.00	84.25	98.00	92.44
140 24	(77.43)	(79.21)	(81.97)	(78.48)	(68.43)	(67.20)	(66.61)	(83.15)	(75.31) ^g
TCGS	90.00	90.75	91.00	90.25	73.00	72.25	71.25	91.75	83.78
1073	(71.55)	(72.28)	(72.53)	(71.79)	(58.68)	(58.19)	(57.40)	(73.30)	$(66.96)^{d}$
TCGS	87.00	87.75	88.50	88.00	71.25	71.50	71.00	90.75	81.97
1616	(68.91)	(69.50)	(70.17)	(69.71)	(57.56)	(57.40)	(56.92)	(72.30)	(65.31) ^e
TCGS	87.50	89.75	90.00	87.75	71.25	70.75	70.50	91.00	82.31
1694	(69.30)	(71.31)	(71.55)	(69.55)	(57.55)	(57.24)	(56.77)	(72.56)	(65.73) ^{bcd}
Mean	88.92	90.35	91.00	89.63	72.62	72.08	70.65	91.31	83.32
Iviean	$(70.68)^{D}$	$(72.02)^{\rm F}$	$(72.75)^{G}$	(71.33) ^E	(58.49) ^C	$(58.09)^{B}$	(56.91) ^A	(73.14) ^G	(66.68)

*Values in the parenthesis indicate angular transformed values; *Values followed by same alphabet in the same column do not differ significantly at 5% level of significance

	Genotype	Treatment	$G \times T$
SEm	0.18	0.14	0.52
CD (5%)	0.46	0.39	1.22
CV (%)		1.561	

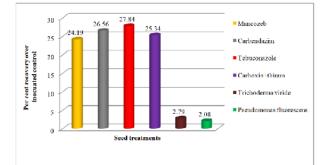
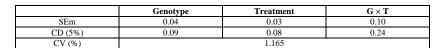



Fig. 1. Per cent recovery of germination in different seed treatments over inoculated control of *Aspergillus flavus*.

Table 2: Effect of seed treatment on seedling length (cm) in groundnut genotypes inoculated with
Aspergillus flavus.

				Seed	lling length (cm)				
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+ thiram	Trichoderma viride	Pseudumonas fluorescens	Inoculated control	Uninoculated control	Mean
Abhaya	14.95	16.82	14.71	16.71	15.66	15.13	14.78	19.43	16.02 ^e
Amaravati	15.37	16.02	13.11	15.66	14.61	14.57	14.46	18.84	15.33 ^c
Chitravati	16.20	17.49	12.65	17.25	15.62	15.59	14.64	17.41	15.85 ^d
Dharani	15.72	15.86	13.70	15.84	13.79	13.79	13.56	16.69	14.87^{a}
Haritandhra	17.39	17.77	13.88	18.74	16.00	15.94	14.85	19.16	16.71 ^f
ICGV 00 350	15.37	15.76	12.65	15.75	13.84	13.68	13.43	18.14	14.83 ^a
Kadiri 6	17.13	19.17	12.93	17.53	16.24	15.74	15.01	20.80	16.82 ^g
Kadiri 9	18.68	20.36	11.85	18.94	17.52	17.46	17.26	20.90	17.87 ^h
Narayani	18.75	19.00	15.30	18.96	18.41	18.35	17.95	20.56	18.41 ⁱ
TAG 24	27.60	27.80	18.66	27.79	27.32	27.33	24.76	31.18	26.55 ^k
TCGS 1073	24.55	25.86	18.95	24.53	21.50	21.47	20.42	28.27	23.19 ^j
TCGS 1616	14.70	15.38	12.89	15.34	15.41	14.67	12.35	19.61	15.04 ^b
TCGS 1694	17.65	18.75	13.97	18.14	16.08	15.86	15.04	19.55	16.88 ^g
Mean	18.00 ^E	18.93 ^G	14.25 ^A	18.55 ^F	17.07 ^D	16.89 ^C	16.04 ^B	20.81 ^H	17.57

*Values followed by same alphabet do not differ significantly at 5% level of significance

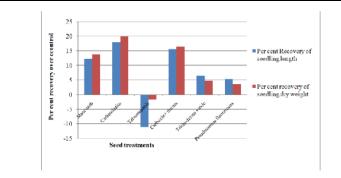


Fig. 2. Per cent recovery of seedling length and dry weight in different seed treatments over inoculated control of *Aspergillus flavus*.

				Seedli	ng Vigour Index	I			
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+ thiram	Trichoderma viride	Pseudumonas fluorescens	Inoculated control	Uninoculated control	Mean
Abhaya	1334	1510	1327	1491	1108	1067	1035	1753	1328 ^e
Amaravati	1368	1434	1187	1398	1051	1045	950	1705	1267 ^c
Chitravati	1438	1566	1148	1535	1113	1107	1017	1575	1312 ^d
Dharani	1364	1391	1209	1386	900	889	864	1472	1184 ^a
Haritandhra	1534	1595	1249	1667	1120	1111	1028	1734	1380 ^f
ICGV 00 350	1356	1423	1144	1410	979	964	927	1655	1232 ^b
Kadiri 6	1490	1725	1173	1556	1182	1153	1069	1883	1404 ^g
Kadiri 9	1662	1848	1084	1700	1336	1296	1243	1902	1509 ^h
Narayani	1688	1757	1422	1730	1344	1321	1274	1907	1555 ⁱ
TAG 24	2629	2682	1829	2668	2363	2323	2086	3055	2454 ^k
TCGS 1073	2209	2347	1725	2214	1570	1551	1455	2593	1958 ^j
TCGS 1616	1278	1350	1141	1350	1098	1049	876	1780	1240 ^b
TCGS 1694	1544	1683	1257	1592	1146	1122	1060	1779	1398 ^g
Mean	1607 ^E	1716 ^G	1300 ^D	1669 ^F	1254 ^C	1231 ^B	1145 ^A	1907 ^H	1479

Table 3: Effect of seed treatment on seedling vigour index I of groundnut genotypes inoculated with Aspergillus flavus.

ntly at 5% level of significance ues followed by same et do not differ signif

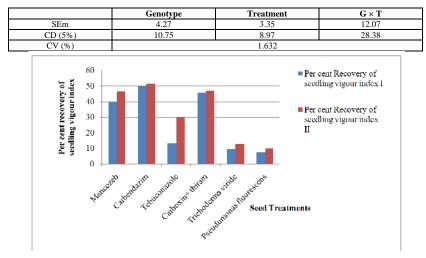


Fig. 3. Per cent recovery of seedling vigour index I and II in different seed treatments over inoculated control of Aspergillus flavus.

Table 4: Effect of seed treatment on seedling dry weight of different groundnut genotypes inoculated with
Aspergillus flavus.

				Seedli	ing dry weight (g	;)								
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+ thiram	Trichoderma viride	Pseudumonas fluorescens	Inoculated control	Uninoculated control	Mean					
Abhaya	0.19	0.20	0.19	0.19	0.19	0.19	0.17	0.22	0.19 ^c					
Amaravati	0.21	0.22	0.18	0.21	0.20	0.20	0.18	0.25	0.21 ^e					
Chitravati	0.20	0.20	0.17	0.19	0.17	0.17	0.17	0.21	0.19 ^b					
Dharani	0.18	0.19	0.15	0.18	0.17	0.17	0.16	0.19	0.17 ^a					
Haritandhra	0.20	0.21	0.18	0.20	0.19	0.19	0.18	0.21	0.20 ^d					
ICGV 00 350	0.19	0.20	0.17	0.19	0.18	0.17	0.17	0.20	0.19 ^b					
Kadiri 6	0.21	0.24	0.19	0.23	0.20	0.19	0.19	0.24	0.21 ^f					
Kadiri 9	0.23	0.25	0.19	0.25	0.20	0.20	0.20	0.25	0.22 ^h					
Narayani	0.25	0.26	0.22	0.26	0.22	0.22	0.22	0.26	0.24 ^j					
TAG 24	0.25	0.26	0.19	0.26	0.23	0.22	0.22	0.26	0.24 ⁱ					
TCGS 1073	0.27	0.30	0.25	0.28	0.26	0.26	0.25	0.30	0.27 ^k					
TCGS 1616	0.19	0.20	0.17	0.19	0.17	0.17	0.17	0.21	0.19 ^b					
TCGS 1694	0.24	0.24	0.18	0.24	0.20	0.19	0.18	0.25	0.21 ^g					
Mean	0.22 ^E	0.23 ^G	0.19 ^A	0.22 ^F	0.20 ^D	0.20 ^C	0.19 ^B	0.24 ^H	0.21					

^{*}Values followed by same alphabet do not differ significantly at 5% level of significance

	Genotype	Treatment	GxT
SEm	0.000574	0.00045	0.00162
CD (5%)	0.001447	0.00121	0.00382
CV (%)		1.56	

Table 5: Effect of seed treatment on seedling vigour index II of groundnut genotypes inoculated with Aspergillus flavus.

				Seedir	g Vigour Index	II											
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+ thiram	Trichoderma viride	Pseudumonas fluorescens	Inoculated control	Uninoculated control	Mean								
Abhaya	17.29	17.61	16.83	16.71	13.28	13.04	11.69	19.95	15.80 ^c								
Amaravati	18.45	19.33	16.11	19.17	14.67	14.55	11.54	22.69	17.06 ^e								
Chitravati	17.37	17.95	15.11	17.18	12.43	12.34	11.69	18.80	15.36 ^b								
Dharani	15.33	16.32	13.66	15.71	10.95	10.69	10.49	16.33	13.68 ^a								
Haritandhra	17.41	18.69	16.58	17.71	13.32	13.22	12.78	19.32	16.13 ^d								
ICGV 00 350	16.90	18.39	15.57	17.18	12.38	12.28	12.00	18.59	15.41 ^b								
Kadiri 6	18.51	21.40	16.95	20.57	14.33	14.08	13.73	21.70	17.66 ^f								
Kadiri 9	20.81	22.32	17.20	22.24	15.40	14.94	14.44	22.79	18.77 ^g								
Narayani	22.72	23.89	20.79	23.50	16.39	16.11	15.83	24.35	20.45 ^h								
TAG 24	23.50	25.40	18.42	24.70	19.87	19.10	18.54	25.95	21.94 ⁱ								
TCGS 1073	24.19	27.20	22.30	25.02	18.69	18.53	17.46	27.91	22.66 ^j								
TCGS 1616	16.71	17.57	15.18	17.07	12.43	12.26	11.80	19.20	15.28 ^b								
TCGS 1694	20.63	21.67	16.07	21.01	14.23	13.58	12.90	22.57	17.83 ^f								
Mean	19.22 ^E	20.60 ^G	16.98 ^D	19.83 ^F	14.49 ^C	14.21 ^B	13.45 ^A	21.55 ^H	17.54								

*Values followed by same alphabet do not differ significantly at 5% level of significance

	Genotype	Treatment	$\mathbf{G} \times \mathbf{T}$		
SEm	0.07	0.05	0.19		
CD (5%)	0.17	0.14	0.45		
CV (%)	2.16				

Table 6: Effect of seed treatment on per cent infection of different groundnut genotypes inoculated with Aspergillus flavus.

				P	er cent infection				
Genotypes	Mancozeb	Carbendazim	Tebuconazole	Carboxin+	Trichoderma	Pseudumonas	Inoculated	Uninoculated	Mean
				thiram	viride	fluorescens	control	control	
Abhaya	8.00	6.50	5.00	7.00	34.50	35.50	38.25	7.25	17.75
rionaya	(16.37)	(14.71)	(12.830	(15.26)	(35.95)	(36.55)	(38.19)	(15.28)	(23.14) ^b
Amaravati	6.75	6.25	3.25	6.50	34.75	36.50	40.75	8.50	17.91
Ailiaiavau	(14.89)	(14.37)	(10.36)	(14.66)	(36.10)	(37.15)	(39.65)	(16.94)	(23.01) ^b
Chitravati	7.00	6.50	3.50	7.00	37.50	38.75	41.00	7.75	18.63
Ciliuavau	(15.24)	(14.660	(10.68)	(15.19)	(37.74)	(38.47)	(39.80)	(15.92)	$(23.46)^{bc}$
Dharani	8.75	7.75	4.50	7.25	37.50	38.50	42.00	8.50	19.34
	(17.18)	(16.15)	(12.22)	(15.05)	(37.74)	(38.33)	(40.38)	(16.78)	(24.23) ^c
Haritandhra	7.75	7.50	5.25	8.25	36.25	35.75	41.25	10.00	19.00
	(15.87)	(15.70)	(13.14)	(16.62)	(37.00)	(36.70)	(39.94)	(18.36)	(24.17) ^c
ICGV 00	10.00	8.25	4.75	9.00	49.00	53.00	55.75	8.50	24.78
350	(18.39)	(16.67)	(12.44)	(17.44)	(44.41)	(46.70)	(48.28)	(16.94)	(27.66) ^e
Kadiri 6	6.75	5.75	2.50	5.75	36.50	39.00	40.00	9.25	18.19
Kaulii 0	(15.00)	(13.84)	(8.84)	(13.76)	(37.15)	(38.63)	(39.22)	(17.68)	(23.01) ^b
Kadiri 9	8.00	6.50	4.75	7.00	34.00	34.25	39.00	9.00	17.81
Kauiii 9	(16.41)	(14.62)	(12.44)	(15.19)	(36.65)	(35.80)	(38.63)	(17.12)	(23.23) ^{bc}
Narayani	3.50	5.00	2.75	4.25	32.50	34.50	37.50	8.50	16.06
Ivarayani	(10.64)	(12.71)	(9.23)	(11.83)	(34.73)	(35.95)	(37.74)	(16.92)	(21.22) ^a
TAG 24	6.25	4.00	3.25	6.00	32.00	32.75	33.25	9.75	15.91
TAG 24	(14.23)	(11.24)	(10.04)	(14.05)	(34.43)	(34.89)	(35.19)	(18.15)	$(21.53)^{a}$
TCGS 1073	7.75	6.75	3.00	7.00	29.00	30.00	36.00	9.25	16.09
1003 1073	(16.06)	(15.03)	(9.83)	(15.27)	(32.51)	(33.17)	(36.85)	(17.64)	$(22.05)^{a}$
TCGS 1616	8.00	7.25	4.00	7.50	47.50	48.50	51.25	8.50	22.81
1005 1010	(16.41)	(15.59)	(11.49)	(15.86)	(43.55)	(44.12)	(45.70)	(16.94)	(26.21) ^d
TCGS 1694	8.50	7.00	4.00	8.00	34.50	35.00	40.00	8.25	18.16
1005 1094	(16.94)	(15.27)	(11.49)	(16.39)	(35.95)	(36.25)	(39.22)	(16.56)	$(23.51)^{bc}$
Mean	7.46	6.54	3.88	6.96	36.58	37.85	41.23	8.69	18.65
mean	(15.67) ^C	$(14.66)^{B}$	(11.16) ^A	$(15.12)^{BC}$	(37.15) ^E	(37.90) ^F	(39.91) ^G	(17.02) ^D	(23.57)

*Values in the parenthesis indicate angular transformed values; *Values followed by same alphabet do not differ significantly at 5% level of significance

	Genotype	Treatment	$\mathbf{G} \times \mathbf{T}$
SEm	0.064	0.051	0.182
CD (5%)	0.162	0.135	0.428
CV (%)	1.54		

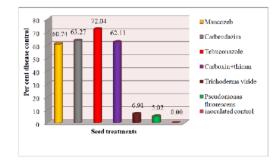


Fig. 4. Per cent disease control in different seed treatments over inoculated control of Aspergillus flavus.

CONCLUSION

Seed treatment with tebuconazole or carbendazim efficiently controls the seed borne infection of *A*. *flavus* in groundnut. Tebuconazole recorded the highest germination and maximum per cent disease control where as carbendazim recorded the highest seedling length, seedling vigour index I, seedling dry weight and seedling vigour index II. Hence protection with tebuconazole @ 1g/kg seed or carbendazim @ 2g/kg seed is recommended.

FUTURE SCOPE

New alternative chemicals *i.e.*, CIB & RC recommended new chemical fungicides and their combinations may be tested against pathogens of groundnut for preventing pre- and post harvest losses and quality seed production.

Conflicts of Interest. None.

REFERENCES

- Abdul-Baki, A. A. and Anderson, J. P. (1973). Vigour determination in soybean seed by multiple criteria. *Crop Science*, 13: 630-633.
- Adithya, G., Rajeshwari, B. and Sudini H. (2017). Seed treatment studies against Aspergillus flavus infection under controlled conditions. International Journal of Pure and Applied Bioscience, 5(3): 212-220.
- Ahmad, L. and Zaidi, R. K. (2018). Effect of chemical and biological treatment for the control seed-borne mycoflore of barley (*Hordeum vulgare L.*). Acta Scientific Agriculture, 2(6): 6-11.
- Azeemoddin, G. (1993). Post harvest technology of oilseeds. In National Seminar on "Oilseeds Research and Development in India: Status and Strategies" 2-5 August, 1993, Hyderabad. 231 pp.
- Chavan, A.M. and Kakde, R.B. (2008). Studies on abnormal oilseeds mycoflora from Marathwada region. *Bionano Frontier*, 2(2): 101-104.

- Dolas, R. M., Gawade, S. B. and Kasture, M. C. (2018). Efficacy of seed treatment of fungicides, bio agents and botanicals on seed mycoflora, seed germination and seedling vigour index of mung bean. *Journal of Pharmacognosy and Phytochemistry*, 7(5): 1074-1077.
- Islam, M. S., Sarker, M. N. I. and Ali, M. A. (2015). Effect of seed borne fungi on germinating wheat seed and their treatment with chemicals. *International Journal of Natural and Social Sciences*, 2: 28-32.
- Jaleel, C.A., Manivannan P., Sankar, B., Kishorekumar, A., Sankari, S. and Panneerselvam, R. (2007). Paclobutrazol enhances photosynthesis and ajmalicine production in *Catharanthus roseus*. *Process Biochemistry*, 42: 1566-1570.
- Kakde, R. B and Chavan, A. M. (2010). Determination of Toxicity of some Fungal Metabolites on Seed Germination and Pigment Leaching. *Journal of Ecobiotechnology*, 2(6): 46-55.
- Kumari, M., Singh, M., Godika, S., Choudhary, S. and Sharma, J. (2016). Effect of different fungicides, plant extracts on incidence varietal screening against collar rot of groundnut (*Arachis hypogaea* L.) caused by *Aspergillus niger* van Tiegham. *The Bioscan*, 11(4): 2835-2839.
- Panse, V. S. and Sukhatme, P. V. (1985). Statistical Methods for Agricultural Workers, ICAR, New Delhi.
- Reddy, Y. T. N. and Khan, M. M. (2001). Effect of osmopriming on germination, seedling growth and vigour of khirni (*Mimusops hexandra*) seed. Seed Research, 29(1): 24-27.
- Rohtas, H. S, Saharan, R. and Rathi, A. S. (2016). Management of collar rot of groundnut with bioagent, botanicals and chemicals. *Biosciences Biotechnology Research Asia*, 13(3): 1657-1663.
- Waliyar, F., Kumar, P. L., Traoré, A., Ntare, B. R., Diarra, B., and Kodio O. (2008). Pre- and postharvest management of aflatoxin contamination in peanuts. (Eds. Leslie, J., Bandyopadhyay, R. and Visconti, A.) Mycotoxins Detection Methods, Management, Public Health and Agricultural Trade, CAB International, UK, pp. 209-218.

How to cite this article: N. Aiswarya, S.L. Bhattiprolu, K. Bayyapu Reddy and G. Rama Rao (2022). Efficacy of Fungicides and Bio-control Agents Against Aspergillus flavus. Biological Forum – An International Journal, 14(2): 698-703.